CPC High-Resolution Global Precipitation Analyses Suite for Improved Monitoring, Assessments and Diagnostics of Global Climate

Pingping Xie, Robert Joyce, Shaorong Wu, and Fengying Sun

NOAA Climate Prediction Center

2013.10.21.

Objectives

- Introducing the CPC high-resolution global precipitation analyses
- Illustrate their applications in climate analysis and climate model / reanalysis verifications

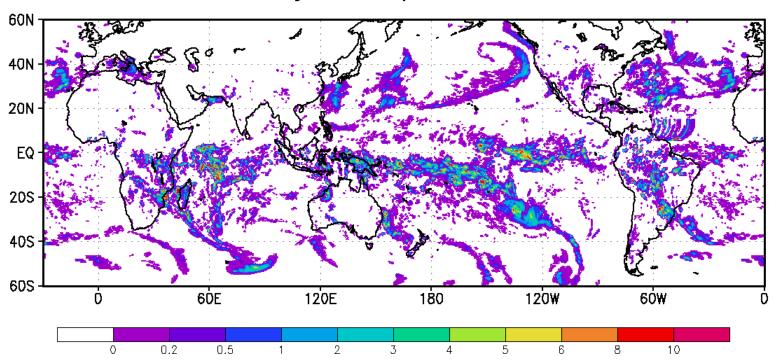
Components of the CPC Hi-Res Precipitation Analyses

 CMORPH integrated satellite precipitation estimates

Bias-corrected CMORPH

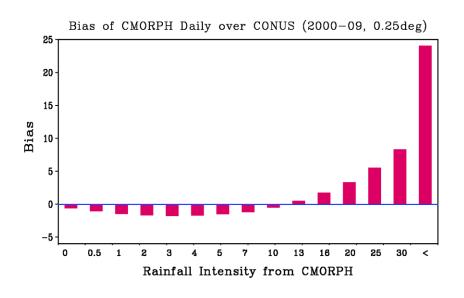
 Blended daily analyses of CMORPH and gauge observations

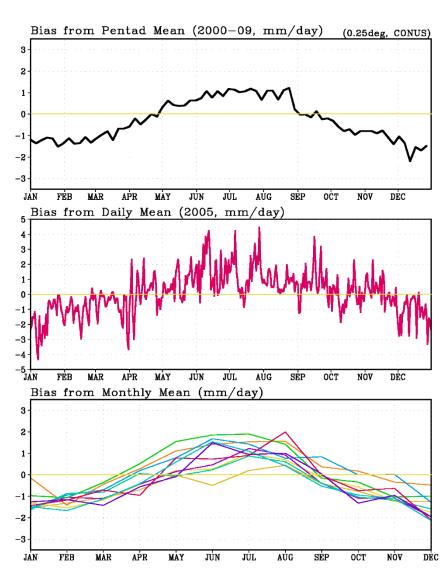
CMORPH Satellite Precipitation Estimates


1) Overview

- Defined by integrating information from both the passive microwave and infrared observations from multiple satellites
 - Joyce et al. (2004); Joyce and Xie (2011)
 - Cloud motion vectors derived from consecutive IR images from geostationary satellites
 - Retrievals of instantaneous precipitation fields detected by low earth orbit satellites propagated from observation times to target analysis time
- Reprocessing completed
 - 8kmx8km over the globe (60°S-60°N)
 - 30-min interval from 1998 to the present

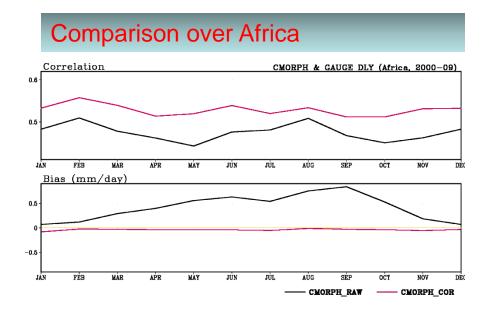
CMORPH Satellite Precipitation Estimates


2) Sample Animation

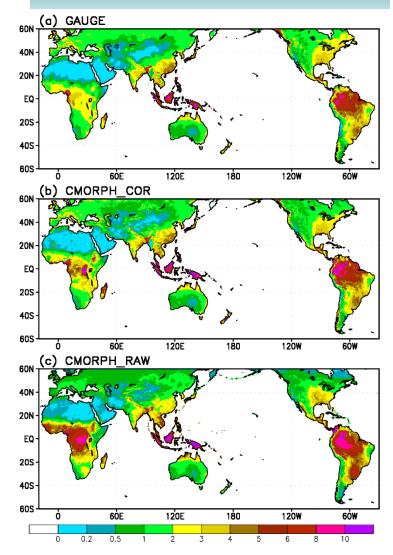

CMORPH 3hourly Precip for 1998, 2, 1, 0Z

1) Bias in the raw CMORPH

Regionally different
Temporally changing
Non-linear



2) Strategy


- Over Land
 - PDF matching against daily gauge analysis
 - PDF tables established as a function of region and season using historical and real-time data
- Over Ocean
 - Calibration against a long-term record (pentad GPCP) with stable quality but coarser resolution (2.5°lat/lon, 5-day)

1) Results over land

- Large-scale bias removed
- Correlation improved

1) Comparison with daily gauge for June 2011

Correlation

Region	CPC Original	CPC HS CRTD	CPC RT CRTD
Globe	0.551	0.617	0.647
60N-40N	0.535	0.549	0.587
40N-20N	0.578	0.650	0.677
20N-20S	0.553	0.584	0.602
20S-40S	0.605	0.715	0.767
40S-60S	0.666	0.684	0.698

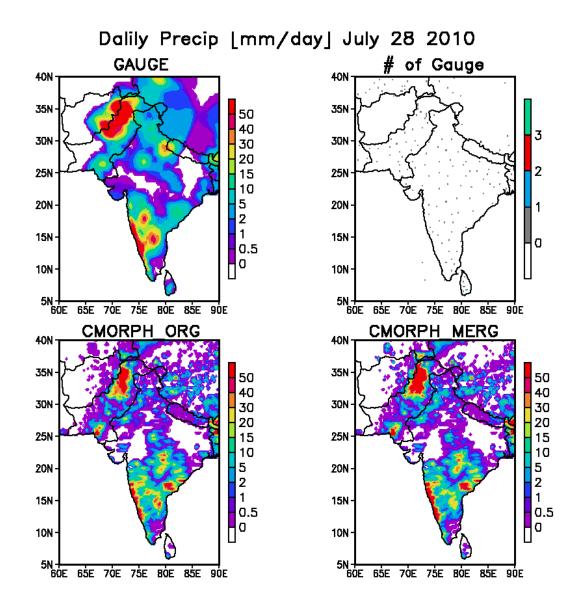
Bias

CPC Original	CPC HS CRTD	CPC RT CRTD
0.098	-0.247	-0.171
0.003	-0.481	-0.142
0.848	0.177	-0.135
-0.512	-0.540	-0.261
-1.128	-0.477	-0.256
-2.755	-0.921	-0.467

- Bias in mm/day
- Bias reduced substantially in CPC version of the estimates

Combining Bias-Crtd CMORPH with Gauge 1) Strategy

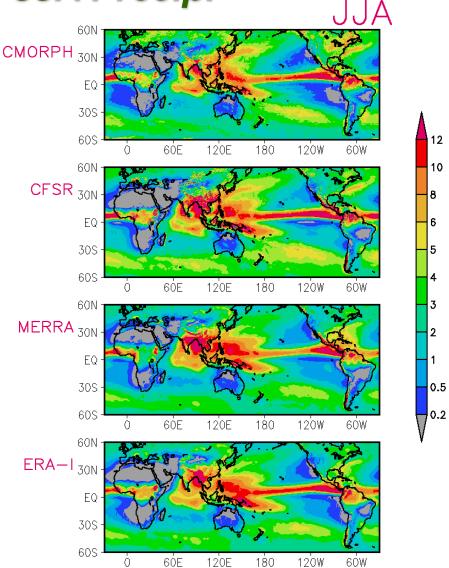
 This is only possible for several regions due to different daily ending time in the gauge reports


•	Africa	(06Z)
•	CONUS/MEX	(12 Z)
•	S. America	(12 Z)
•	Australia	(00Z)
•	China	(00Z)

- Based on Xie and Xiong (2011)
 Combining the bias-corrected CMORPH with gauge observations through the Optimal Interpolation (OI) over selected regions where gauge observations have the same daily ending time
 - CMORPH and gauge data are used as the first guess and observations, respectively

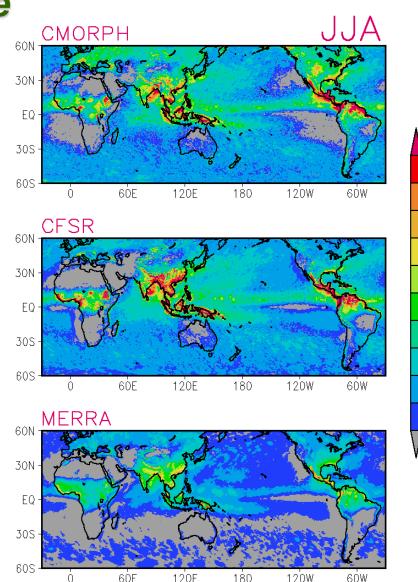
Combining Bias-Crtd CMORPH with Gauge

2. Example


- Gauge analysis depict heavy rain but tend to extend the raining area
- Satellite data tend to under-estimate
- Merged analysis
 present improved
 depiction of the heavy
 rain

Applications [1]

Evaluation of Reanalyses JJA Precip.

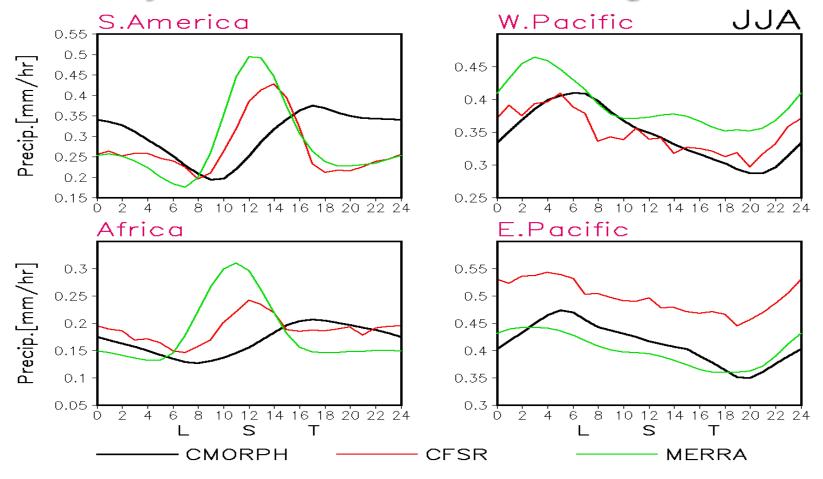

- JJA Mean for 1998 2010
- Spatial pattern of precipitation, especially that associated with topography, well reproduced by the reanalyses
- Larger oceanic precipitation in CFSR and ERA-I
- Weaker precipitation over midlatitude compared to the CMORPH
- Heavier rainfall over Maritimecontinent

Applications [2]

Precipitation Diurnal Cycle

- Standard deviation of 24 hourly means for 1998-2010 (mm/day)
- Diurnal amplitude in CFSR is very similar to that in the observations but presents smaller / larger over ocean, extra-tropical land / tropical land
- Diurnal amplitude in MERRA is generally smaller than that in the observations over tropics and extra-tropics in northern hemisphere and is almost diminished over extra-tropics in southern hemisphere

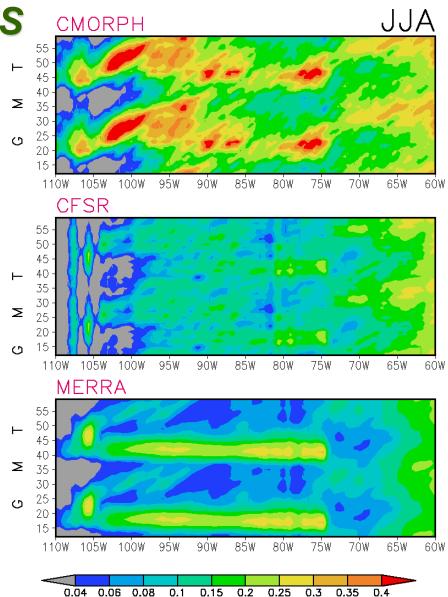
12


10

0.5

0.2

Applications [3]


Diurnal Cycle over Four Selected Regions

- Peak in the reanalyses comes earlier
- Amplitude in the reanalyses is larger / smaller over tropical land / ocean

Applications [4] *Diurnal Cycle over CONUS*

- Longitude section (X-axis) of diurnal evolution (Y-axis) along 40°N over CONUS
- Diurnal cycle (Y-axis) repeated twice
- Precipitation starts from the eastern Rocky around early afternoon (20GMT), traveling eastward and reaching 90°W late afternoon the next day
- Diurnal cycle over land east of 90°W presents fixed phase, opposite to that of precipitation over nearby ocean
- Neither CFSR nor MERRA captures this diurnal variation patterns very well

Summary

- Three sets of gauge-satellite precipitation analyses
 - Reprocessed CMORPH Satellite Estimates
 - Bias-corrected Satellite Estimates
 - Gauge-satellite combined analyses
- Data sets are being released at: ftp.cpc.ncep.noaa.gov/precip
- The CPC high-resolution global precipitation analysis improves our capability to monitor, analysis and assess global precipitation
- Your comments highly appreciated
- POC:

Pingping.Xie@noaa.gov